Numbers in Chemistry

Measurments have uncertainty in there value

Definitions \& Counted Values Exact values w/ no uncertainty

on first ruler

$$
2.2 \mathrm{~cm} \pm 0.1 \mathrm{~cm}
$$

$\left.\begin{array}{l}\text { As big as } 2.3 \mathrm{~cm} \\ \text { As small as } 2.1 \mathrm{~cm}\end{array}\right\} \begin{aligned} & \text { uncertainty within } \\ & \text { measurment }\end{aligned}$

Example

$$
\begin{aligned}
& 31.62 \mathrm{~m} \pm 0.01 \mathrm{~m} \quad 31.63 \mathrm{~m} \\
& \begin{array}{l}
\text { uncertainty }
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
21,000 . L \\
= \\
20,999 \mathrm{~L}
\end{gathered}
$$

uncertainty

$7.05 \mathrm{~cm} \pm 0.01 \mathrm{~cm}$
$1.58 \mathrm{~cm} \pm 0.01 \mathrm{~cm}$

Measurments have Z parts

Value unit
$\uparrow \quad \uparrow$
number what is being measured
Cm Centimeters
m meters
L Liters
in inches
ft feet
gal gallons

Values that are exact \longrightarrow no uncertainty

How many keys $\Rightarrow 3$ keys no \pm Counted value rather then measured

Example
measured 3 ft obtained by ruler \Rightarrow contains uncertainly

$$
3 \mathrm{ft} \pm 1 \mathrm{ft} \quad 4 \mathrm{ft}-2 \mathrm{ft}
$$

Counted 3 pens obtained by counting \Rightarrow Exact no \pm
$2^{\text {nd }}$ Type of exact value is a definition
Definitions
Exactly 12 in in 1 foot

$$
\left.\begin{array}{l}
1 Z_{\mathrm{in}}=1 \mathrm{ft} \\
100 \mathrm{~cm}=1 \mathrm{~m} \\
1000 \mathrm{~mm}=1 \mathrm{~m}
\end{array}\right\} \text { Exact equalities }
$$

$$
\begin{aligned}
\operatorname{Iin}_{\mathrm{in}} \times 10.0 \mathrm{in}= & 70.0 \mathrm{in}^{2} \pm 0.1 \mathrm{in}^{2} \\
& 70.1 \mathrm{in}^{2}-69.9 \mathrm{in}^{2}
\end{aligned}
$$

Significat figures (Significant Digits)
System for estimating uncertainty in a Calculation

- Rules for how many sig figs are in an individual measurment
- Rules for how to apply sig figs in a calculation

Applying Big figs
Answer must be rounded to

$$
\begin{aligned}
& \text { Isp } \begin{array}{l}
\text { SSR } \\
7 \mathrm{in} \times 10.0 \mathrm{in}= \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
80 \mathrm{in}^{2} \mathrm{in}^{2} \longleftrightarrow 60 \mathrm{in}^{2} \leftrightarrow 6 \mathrm{in}^{2}
\end{array}
\end{aligned}
$$

